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Despite having higher maintenance costs than AC motors, DC motors had been widely 
employed in the industry due to their outstanding speed control capabilities. This 
employment increased due to the DC output of some renewable sources recently. This 
article introduces the speed control of DC motors using model reference adaptive control
(MRAC). This control is achieved through regulating the armature voltage at different 
load changes. A comparison between the proposed adaptive controller and optimized PI 
controller using the elephant herding optimization (EHO) is presented. The PI controller 

parameters were optimality adjusted to minimize the integral absolute error, minimum 
overshoot, and minimum settling time. Computer simulations show that the suggested 
MRAC is preferable to a traditional optimized PI controller. In addition, the proposed 
controller is effective in regulating the DC motor over a broad range of operating speeds.

Nomenclature  

ANN Artificial neural network 

ANFIS Adaptive Neuorfuzzy inference system 

damping constant 

DVR Dynamic voltage restorer 

EHO elephant herding optimization 

FC Fuel cell 

armature current 

motor inertia constant 

back emf constant 

Torque constant 

Feedback constant 

armature reactance 

MPPT Maximum power point tracking 

MRAC Model reference adaptive controller 

MFAC Model free adaptive controller 

MPC Model predictive control 

PI Proportional Integral 

PV photovoltaic 

armature resistance 

STATCOM Static synchronous compensator 

Load torque 

UPFC Unified power flow controller 

terminal (supply) voltage 

ω rotor speed 

I. INTRODUCTION 

Due to their effectiveness and robustness, DC motors are 
widely employed in various industrial applications, partic

ularly those that require accurate speed control including 
servo control and traction activities.1–7 These motors are 
powered by a DC source, which is where the majority of re
newable energy sources are produced. These sources are PV 
systems,8 Fuel cell systems,9 and some electrical genera
tors in wind applications like permanent magnet synchro
nous machines10 and switched reluctance machines.11 PV-
DC pumping systems are examples of uses for DC motors 
powered by renewable energy sources.12 On the other hand, 
since these kinds of renewable sources were used to power 
the AC motors, DC-AC inverters had to be used. 

DC motors are active ease in developing suitable feed
back control systems, particularly those of the PI and PID 
types.13–16 The possibilities for analyzing and redesigning 
existing in-use DC motor drive systems are greatly ex
panded by the expanding availability of feedback controller 
design methodologies and the quick development of circuit 
simulation software like Pspice and Matlab.13–16 PI and PID 
controllers are the most applicable straightforward con
trollers with unlimited applications.17–20 Despite, the fea
tures of PI and PID controllers, the adjustment of their 
parameters is a challenge. For the best tuning of these pa
rameters, a variety of optimization approaches were used; 
some of them are listed in Table 1. 

All the optimization techniques reported in Table 1 suc
ceeded at optimal determining the PI controller parameters 
while minimizing/maximizing some objectives. They also 
succeed at improving the system performance based on the 
presented objectives. The optimal tuning and adjustment 
of such PI controllers have some drawbacks. These are the 
time taken during this optimization process, and the in
ability to update the controller parameter s they are sta
tic ones. Regarding the time taken for tuning, even if it 
is very small but still not adapted to the fast changes in 
the operating conditions application. That this tuning is 
performed off-line while the PI parameters need to be up
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Table 1. Optimization approach of PI controllers and applications        

Optimization technique Application 

Genetic Algorithm DC motor control21 

Direct torque control22 

Continuous stirred tank reactor control23 

STATCOM control20 

Particle swarm DC motor control24 

Control of STATCOM for wind energy system25 

whale optimization algorithm Speed control of DC motor26 

Control of STATCOM for hybrid power system20 

Modified flower pollination algorithm DC motor control27 

Ferroreonanace mitigation in wing energy systems28 

Connecting FC to the grid9 

Harmony Search (HS) DC motor control29 

Integrating FC into the electrical utility9 

Electromagnetic Field Optimization Integrating FC into the electrical utility19 

Gray wolf MPPT of wind systems30 

Cuckoo Search Control of DVR31 

MPPT of PV systems32 

Elephant herding algorithm Superconductor control for DFIG in wind applications 
LVRT support of wind systems11 

To the knowledge of the author, the Elephant herding algorithm is not employed in tuning PI controller parameters for DC motor speed. 

Table 2. Adaptive controller techniques and applications      

Adaptive technique Application 

ANN DC motor control33 

MPPT of PV systems8 

Switched-reluctance generator in wind energy systems34 

Restoring the balance of an unbalanced power system35 

ANFIS DC motor control36 

Wind applications37 

MPPT of PV system8 

MPC DC motor speed control38 

Industrial applications39 

Autonomous Ground Vehicles40 

MFAC DC motor control38 

UPFC41 

Weight control of cement steady flow42 

adaptive backstepping DC motor43 

MRAC Servo motor44 

STATCOM25 

All the listed adaptive controllers surplus the classical PI controllers even the optimized ones. 

dated online. While the inability to update the parame
ters based on the changing in the operating conditions is a 
big obstacle. This is clear in some motor applications when 
the load is changed. In addition, some changes in applica
tions mainly depend on environmental conditions like so
lar temperatures and irradiance n PV applications and wind 
speed in wind applications. This opens the floor for us
ing some other adaptive techniques. From which ANN, AN
FIS, MRAC, MFAC, MPC and the environmental conditions. 
These applications are given in Table 2. 

This paper will present an adaptive controller for the 
speed control of DC motor, MRAC. This adaptive controller 
is MRAC. A companion between this adaptive controller 
and the EHA-PI controller will be presented. 

II. MATHEMATICAL MODEL OF THE DC MOTOR 
AND PROPOSED ALGORITHM 

The motor is sensed as a feedback control signal for speed 
control. This feedback is compared to the reference arma
ture voltage as shown in Figure 1. 

1. The motor dynamics can be described by the follow
ing equations4: 
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            Fig. 1. Block diagram of DC mot or

In general, the armature current and magnetic field in
tensity of a DC motor determine how much torque is pro
duced. Since the magnetic field is assumed to remain con
stant in this paper, the motor torque is proportional to the 
armature current by a constant , as: 

By a constant factor , the back emf, is proportional to the 
shaft’s angular velocity as 

Since the motor torque and back emf constants are equiv
alent in SI units, we shall use the symbol k to denote both 
values. 

Based on Kirchhoff’s voltage law and Newton’s second 
law, the following governing equations may be deduced 
based on Figure 1: 

The aforementioned modeling equations can be transferred 
by Laplace transform as 

Then the transfer function for the DC motor speed control 
based-armature voltage can be represented as: 

The stst-space representation of the DC motor equation 
can be described as4–6: 

The control block diagram is shown in Figure 2. 
In this paper, MRAC will be used to regulate the speed 

of the motor. In addition, a comparison between this con
troller and a PI controller will be presented to test the ef
fectiveness of the proposed adaptive controller. The para
meters of the PI controller will be tuned using EHO. 

This EHO will be used to minimize the integral of the 
sum of squares of errors between the armature and emf 
voltages in order to reach the target constant speed at load 
variations. 

1. ELEPHANT HERDING OPTIMIZATION 

The performance of the system is significantly impacted by 
the values of the PI controller parameters. If they were cor
rectly determined the system’s performance will improve 
noticeably. The main solutions for many applications are 
optimization techniques for the best tuning of PI control 
settings. For the best tuning of PI control parameters, one 
contemporary optimization approach is called EHO.45,46 

In this article, EHO is used to lessen the objective func
tion J, that is can be defined as: 

The input to the PI controller is the error signal between 
the two voltages. Which is a function of the EHO-PI control 
parameters. 

EHO is essentially based on the following presumptions: 

Assume there are H clans of elephants in total, with 
D elephants in each tribe. The position of ith elephant, 
i=1,2,3……D in jth clan, j =1,2……H, is represented as Xi,j. 
The position of every elephant, excluding the mother, has 
been updated as: 

Such that  is a scaling factor and  is a random number. 
and r are between 0 and 1. 

The following updates the matriarch location: 

Such that  is a scaling factor between 0, 1 and  is 
the average of the positions of all elephants. 

The male elephant departs the clans in the poorest possible 
position, as indicated by the modified notation : 

The same process is carried out until the termination re
quirement is met. The flow chart of EHO is shown in Figure 

1. There are a fixed number of subgroups known as clans 
in the entire population of elephants, and each clan 
has a defined number of elephants. 

2. Many elephants frequently abandon their clan and 
live alone. 

3. Each clan operates under a matriarch’s direction. 

DC motor control using model reference adaptive control

Yanbu Journal of Engineering and Science

79

https://yjes.scholasticahq.com/article/74154-dc-motor-control-using-model-reference-adaptive-control/attachment/155661.png?auth_token=WhGp4cQx3XiBCdU_WDlF


          Fig. 2. Co ntrol system using EHO-PI

3. While the convergence of this objective function for 150 
iterations is shown in Figure 4. 

2. MODEL REFERENCE ADAPTIVE CONTROL 

At specific operating circumstances, the PI control parame
ters acquired from EHO are calculated. To achieve the ideal 
value for the objective function, the control parameters 
must be updated (retuned) in response to any change in the 
operating conditions. In other words, the PI controller how
ever optimal tunning is tuned at certain operating condi
tions. The tuned PI controllers could not be implemented 
online because this tuning takes a long time. Moreover, 
switching the operating point from the optimized one does 
not guarantee optimality. Adaptive control techniques 
must be used to address these PI controller limitations, al
though they are more complex and expensive than PI con
trollers. These adaptive techniques surpluses the PI con
trollers as summarized in Table 2. 

This work employs MRAC-based MIT adaptive mecha
nism.47,48 

The foundation of MRAC is the development of a closed-
loop controller with updated parameters to accommodate 
the system’s response. In the DC motor speed control sys
tem, a reference model should respond as expected, Vmodel. 
When there is a disturbance, you prefer the system to pro
vide this desired response. The control settings are updated 
based on this variable error as the system output, Vout, is 
monitored and compared to the expected response.25 The 
MRAC is depicted in Figure 5. 

V. SIMULATION RESULTS 

The proposed MRAC presented in this paper is applied to a 
DC motor of these parameters49: 

The steady-state operation of the DC motor will be in
vestigated initially and the motor speed is selected to be 

          Fig. 3. Flow  chart of EHO
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                Fig. 4. Co nve rgence  of the object ive  funct ion using EHO

          Fig. 5. Co ntrol system using MRAC

constant at 1500 rpm. The motor reached at this selected 
speed by both EHO-PI controller and MRAC successfully 
with faster reaching when applying MRAF as depicted in 
Figure 6. The armature current profile in this steady-state 
operation is improved with less overshoot when using 
MFAC over EHO-PI controller as given in Figure 7. 

TEST CASE 1: LOAD TORQUE VARIATION 

The load torque is increased by 25% at 1 s in this case 
suddenly to demonstrate the efficacy of the suggested ap
proaches to control the motor speed. A sudden decrease 
in the speed has occurred at t=1 s when the load torque 
is increased. This decrease is more is less when applying 
MRAC over EHO-PI controller as in Figure 8. When adopt

ing MRAC, as shown in Figure 9, the armature current rose 
at the same time as the torque increased with superior per
formance. When the load torque increased, the speed per
formance when utilizing MRAC improved at a quick rate of 
change in the controlled armature voltage as shown in Fig
ure 10. 

TEST CASE 2: REFERENCE SPEED VARIATION 

An additional test case will be presented to evaluate the 
viability of the suggested speed controller for monitoring 
speed changes. In this case, the reference speed is increased 
from 1500 rpm to 1800 rpm at t=1 s. Both the controllers 
EHO-PI and MRAC succussed at reaching the target speed. 
While the MRAC reached faster as shown in Figure 11. The 
armature controller voltage noticeably rises when the ref
erence speed increases, as shown in Figure 12, despite the 
planned EHO-PI controller’s ability to track the reference 
speed which may harm the motor. However, the MRAC did 
not experience this growth. 

VI. CONCLUSIONS 

This work presents an adaptive model reference controller 
for DC motor speed control. This controller works by ad
justing the armature voltage. By achieving the steady state 
value more quickly, the suggested adaptive controller en
hances the motor speed profile during steady state oper
ation. Two test scenarios, involving variations in the load 
torque and reference speed, were used to examine the per
formance of the adaptive controller. The MRAC succeeded 
to regulate the target speed in the two scenarios. In addi
tion, the suggested adaptive controller is contrasted with 
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the EHO-optimized PI controller. Which showed the superiority of the adaptive controller over the EHO-PI controller.

            Fig. 6. Mot or speed at steady state

            

         

Fig. 7.  Armature current at steady state
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Fig. 8. Mot or speed at a step change in the load torque

                      

       

Fig. 9. Armature current at a step change in the load torque
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Fig. 10. Armature vo ltage at a step change in the load torque

              

       

Fig. 11. Mot or speed at reference  speed change
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              Fig. 12. Armature vo ltage at reference  speed change
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